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The information depth A, which is defined in
x-ray photoelectron spectroscopy (XPS) in such a

way that 11,1 [Le and Ay are the
Ae Ax

photoelectron inelastic mean free path (IMFP)
and the x-ray evanescent length in the solid,
respectivelyl, is usually 20-40 A in XPS. To
choose several information depths A = 13, A9, ...,
we have used the x-ray total reflection technique.
The total reflection =x-ray photoelectron
spectroscopy was first performed by Henke [1].
Recently, Chester et al. {2, 3], Jach et al. {4, 5],
and the present authors [6-8] used this to analyze
surface chemical states. We have reported {9] by
a numerical simulation that an XPS background
was reduced when the x-rays were totally
reflected. We demonstrate that how we can
estimate Ag from the reduction fuctor of
backgrounds based on the Tougaard’s backgrounds
[10].

The sample measured was flat Ag. Total
reflection XPS experiments were performed on a
soft x-ray beamline (BL-11B) at the Photon
Factory, KEK (Fig. 1). The electron analyzer was
concentric hemispherical analyzer made by Rigaku
(XPS-7000 system). The beam size was 7.0 mm
(vertical) and 1.0 mm by slits.

The sample current was measured as a
function of glancing angle (Fig. 2a). The glancing
angle at which the sample current had a maximum
was 26.0 mrad. This angle was the critical angle
of the x-ray total reflection {11, 12].

We display the calculated surface x-ray
intensity, T(¢), in Fig. 2b, using n tabulated in
Henke et al. [13]. The agreement between the
measured current intensity curve (Fig. 2a) and
the calculated x-ray intensity curve (Fig. 2b) is
satisfactory. The evanescent length Ay of x-rays

N, S
47 Im(U) ’
x-ray wavelength [14]. This relation is shown in
Fig. 2¢ for 2000.0 eV x-rays impinging on Ag. We
have measured the XPS spectra at ¢ = 20, 26, and
97 mrad. The x-ray evanescent length of these
glancing angles are 2.4, 3.8, and 65.7 nm,
respectively, read from Fig. 2¢c.

The measured XPS spectra are shown in Fig.
3d. The inelastic backgrounds which extend to
deeper binding energy from the Ag 3d peaks are
weak for totally reflected x-ray excitation (20
mrad), but are strong for larger glancing angle x-
ray excitation (97 mrad). The observed XPS
spectra j(E) of exponentially distributed emitter
atoms in a solid in such a way that, (number of

atoms) o« €%/A& , where z is the depth from the
surface, is [10],

is expressed as Ax =- where A is the
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Fig. 1 Schematic illustration of the present experimental
setup (top view). The electric vector (E) is indicated. The
sample was rotated by a stepping motor. The sample was
vertical.
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Fig. 2 (a) Measured glancing angle dependence of sample
drain current. (b) Calculated x-ray intensity on Ag surface
for 2000 eV x-rays. The surface x-ray intensity is
normalized with respect to the incident x-ray intensity.
(¢) r?alculated evanescent length of 2000 eV x-rays from Ag
surface.
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Fig. 8 Comparison between measured and calculated XPS
spectra in the vicinity of Ag 3d peaks. Calculated XPS for
Ae = 0.50 (a), 1.00 (b), and 5.00 nm (¢). Measured XPS for 20

and 97 mrad glancing angles (d).

J(E)=FE)+ A M_z.
%Ew+wum%

where F(E) is the true XPS spectral function
without energy loss, and B=2866 eV, C=1643 eV2
for Ag [10). We have calculated j(E) for Ay= 2.4 -
and 65.7 nm; A¢ is here an adjustable parameter
and we varied it from 0.5 to 10 nm.
Representative spectra calculated for A = 0.50,
1.00, and 5.00 as well as the observed spectra are
shown in Fig. 3. The observed spectral
background (Fig. 3d) is reproduced in Fig. 3b.
Consequently, dg = 1.00 nm. This Ag is the IMFP
of 1630 eV electrons (the Ag 3d binding energy
was 370 eV and incident x-ray energy was 2000
eV). From Powell [15], the inelastic mean free
path of 1600 eV electron is 2.5 nm. Tanuma et al.

JE)dE"

recalculated the IMFP for the same condition and
obtained values of 2.01 {16] and 2.02 nm {17]. Our
value is half of these calculations. The
evaporated Ag layer has significantly less density
than the bulk, and its surface is not perfectly flat.
However, the density used for the evanescent x-
ray length was that of bulk. Thus the IMFP
measured in the present work is the bulk value;
the inhomogeneous density effects of the gample
surface were canceled out if the density
dependence of Iy is similar to that of .
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